Chem. Ber. 118, 4543-4552 (1985)

Aromaten(phosphan)metall-Komplexe, IX¹⁾

Synthese und Elektrophilie dikationischer (Aromaten)metall(II)-Komplexe des Typs $[C_6R_6'M(PMe_3)_2C_2H_3R]^{2+}$ (M = Ru, Os)

Helmut Werner* und Rainer Werner

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 14. Februar 1985

Die Komplexe $[C_6H_6MC_2H_4R(PMe_3)_2]PF_6(3-7)$ reagieren mit $[CPh_3]PF_6$ unter Hydrid-Eliminierung zu den Aromaten(olefin)ruthenium(II)- und -osmium(II)-Verbindungen $[C_6H_6M(PMe_3)_2C_2H_3R](PF_6)_2(8-12)$. Aus $[C_6H_6Ru(PMe_3)_2]PF_6(1)$ und $[OEt_3]BF_4$ erhält man in Aceton (ac) den Solvat-Komplex $[C_6H_6Ru(PMe_3)_2(ac)](BF_4)_2$ (2), der gegenüber Olefinen inert ist und keinen Ligandenaustausch eingeht. Bei Umsetzung von $[C_6H_6Ru(PMe_3)_2C_2H_4](PF_6)_2$ (8) mit PMe_3, PiPr_3, PPh_3 und P(OMe)_3 entstehen unter Addition des Nucleophils am Ethylen die Verbindungen $[C_6H_6Ru(C_2H_4PR_3)(PMe_3)_2](PF_6)_2$ (13–16); analog bildet sich aus $[C_6Me_6Ru(PMe_3)_2C_2H_4](PF_6)_2$ (21) und PMe_3 der Komplex $[C_6Me_6Ru-(C_2H_4PMe_3)(PMe_3)_2](PF_6)_2$ (22). Harte Basen wie NEt₃, NaOMe und LiMe reagieren mit 3 unter nucleophiler Addition am Aromaten und Bildung der (η^5 -Cyclohexadienyl)ruthenium(II)-Verbindungen 18–20. Auf gleiche Weise werden durch Reaktion von $[C_6H_6Ru(PMe_3)_3](PF_6)_2$ (23) mit NEt_3 und LiMe die Komplexe $[(6-Et_3N-\eta^5-C_6H_6) Ru(PMe_3)_3](PF_6)_2$ (24) und $[(6-Me-\eta^5-C_6H_6)Ru(PMe_3)_3]PF_6$ (25) synthetisiert.

Arene(phosphane)metal Complexes, IX¹⁾

Synthesis and Electrophilic Behaviour of Dicationic (Arene)metal(II) Complexes of the Type $[C_6R_{\delta}M(PMe_3)_2C_2H_3R]^{2+}$ (M = Ru, Os)

The complexes $[C_6H_6MC_2H_4R(PMe_3)_2]PF_6$ (3–7) react with $[CPh_3]PF_6$ by hydride abstraction to give the arene(olefin)ruthenium(II) and -osmium(II) compounds $[C_6H_6M-(PMe_3)_2C_2H_3R](PF_6)_2$ (8–12). From $[C_6H_6Ru(PMe_3)_2]PF_6$ (1) and $[OEt_3]BF_4$ in acetone (ac) the solvate complex $[C_6H_6Ru(PMe_3)_2(ac)](BF_4)_2$ (2) is formed which does not react with olefins by displacement of the acetone ligand. Reaction of $[C_6H_6Ru(PMe_3)_2C_2H_4](PF_6)_2$ (8) with PMe₃, $PiPr_3$, PPh₃, and P(OMe)_3 produces the compounds $[C_6H_6Ru(C_2H_4PR_3)-(PMe_3)_2](PF_6)_2$ (13–16) by addition of the nucleophile to the coordinated ethylene. Similarly, from $[C_6M_6Ru(PMe_3)_2C_2H_4](PF_6)_2$ (21) and PMe_3 the complex $[C_6M_6Ru-(C_2H_4PMc_3)(PMe_3)_2](PF_6)_2$ (22) is obtained. Reaction of 3 with hard bases such as NEt₃, NaOMe and LiMe leads to nucleophilic addition at the arene and formation of the (η^5 -cyclohexadienyl)ruthenium(II) compounds 18–20. Following the same route, the complexes $[(6-Et_3N-\eta^5-C_6H_6)Ru(PMe_3)_3](PF_6)_2$ (23) and NEt₃ or LiMe, respectively.

Aromaten(phosphan)metall-Komplexe können sich je nach Ladung und Elektronenkonfiguration des Metalls wie ein Nucleophil oder ein Elektrophil verhalten. Während die Metall(0)-Verbindungen $C_6H_6M(PR_3)_2$ und $C_6H_6M(PMe_3)C_2H_3R$ (M = Ru, Os) typische Metall-Basen sind²⁾ und bereitwillig mit Lewis-Säuren wie z. B. oder Me₃SnX reagieren^{3,4)}, HX, CH₃X gehen die Kationen $[C_6H_6RuCl(PR_3)PR'_3]^+$ und $[C_6H_6OsI(PMe_3)_2]^+$ sehr leicht eine Wechselwirkung mit einem Nucleophil ein^{5,6)}. Das Phosphan oder Carbanion einer Organyllithium-Verbindung greift dabei am Sechsring an und wandelt den Aromaten in ein η^5 -Cyclohexadienylsystem um. Bei den Reaktionen der kationischen Komplexe $[C_6H_6MCH_3(PMe_3)C_2H_4]^+$ (M = Ru, Os) mit PMe_3 erfolgt eine Addition des Phosphans am Ethylen und nicht am Benzol⁴, wie es aufgrund einer von Davies. Green und Mingos aufgestellten Regel auch zu erwarten ist⁷).

Im Zusammenhang mit den oben erwähnten Reaktivitätsstudien³⁻⁶⁾ interessierte es uns zu erfahren, wie *Dikationen* des Typs $[C_6H_6M(PMe_3)_2C_2H_3R]^{2+}$ mit Nucleophilen reagieren, welchen Einfluß die Erhöhung der Ladung auf die Reaktivität hat und inwieweit der Reaktionsverlauf von der Art des angreifenden Substrats abhängt. Als Voraussetzung für diese Untersuchungen mußten zunächst einmal Synthesewege für die vorher noch nicht beschriebenen Komplexe $[C_6H_6M(PMe_3)_2C_2H_3R]X_2$ gefunden werden.

1. Darstellung der Komplexe $[C_6H_6M(PMe_3)_2C_2H_3R](PF_6)_2$ (8–12)

Die ersten Versuche zur Synthese der Olefinruthenium-Komplexe $[C_6H_6Ru-(PMe_3)_2(C_2H_3R)]X_2$ wurden mit der leicht zugänglichen und gut handhabbaren Hydridometall-Verbindung $[C_6H_6RuH(PMe_3)_2]PF_6$ (1) als Ausgangssubstanz durchgeführt. Die Absicht war, durch Hydridabzug ein koordinativ ungesättigtes (eventuell solvensstabilisiertes) 16-Elektronen-Teilchen $[C_6H_6Ru(PMe_3)_2]^{2+}$ zu erzeugen und an die freie Koordinationsstelle das Olefin zu addieren.

Die Umsetzung von 1 mit $[CPh_3]PF_6$ (in Aceton) führte jedoch nicht zu diesem Ziel. In dem Produktgemisch ließ sich zwar NMR-spektroskopisch das Dikation $[C_6H_6Ru(PMe_3)_2(ac)]^{2+}$ nachweisen, doch war die Ausbeute völlig unbefriedigend. Wesentlich günstiger für die Abspaltung des Hydrids erwies sich Meerweins Reagens $[OEt_3]BF_4$, das – im Überschuß eingesetzt – in guter Ausbeute den Komplex 2 ergibt. Die Zusammensetzung des orangefarbenen kristallinen Feststoffs ist durch Elementaranalysen und Leitfähigkeitsmessungen gesichert.

$$[C_{6}H_{6}RuH(PMe_{3})_{2}]PF_{6} + [OEt_{3}]BF_{4} \xrightarrow{BF_{4}^{-}} [C_{6}H_{6}Ru(PMe_{3})_{2}(ac)](BF_{4})_{2} + C_{2}H_{6} + OEt_{2}$$

$$1 \qquad \qquad 2 (ac = (CH_{3})_{2}CO)$$

Die Vermutung, daß der Acetonligand in 2 ähnlich labil gebunden ist wie in der Verbindung $[C_6H_6RuCl(PMe_3)(ac)]PF_6^{8}$, fand sich nicht bestätigt. 2 reagiert in Nitromethan nicht mit Ethylen oder Propen und ist damit keine geeignete Ausgangssubstanz für die gesuchten Titelkomplexe. Deren Darstellung gelingt jedoch problemlos ausgehend von den Alkylmetall-Verbindungen 3–7, die bei Umsetzung mit $[CPh_3]PF_6$ in Aceton oder Nitromethan teilweise fast quantitativ

die Produkte 8–12 liefern. Nur für die Bildung des Buten-Komplexes 10 ist kurzes Erwärmen nötig, während die Reaktionen ansonsten bei Raumtemperatur ablaufen. Bezüglich des Reaktionsmechanismus nehmen wir an, daß das Trityl-Kation an einer C–H-Bindung des β -C-Atoms der Alkylgruppe angreift und ein Hydrid-Ion eliminiert. Für die Umwandlung der mit 3 sehr gut vergleichbaren Rhodiumverbindung [C₅H₅RhC₂H₅(PMe₃)₂]PF₆ in den dikationischen Komplex [C₅H₅Rh-(PMe₃)₂C₂H₄]²⁺ ist dieser Vorschlag durch Markierungsexperimente bewiesen⁹.

 $[C_{6}H_{6}MC_{2}H_{4}R(PMe_{3})_{2}]PF_{6} + [CPh_{3}]PF_{6} \longrightarrow [C_{6}H_{6}M(PMe_{3})_{2}C_{2}H_{3}R](PF_{6})_{2} + HCPh_{3}$ $3 - 7 \qquad 8 - 12$

	М	R		м	R
3, 8 4, 9 5, 10	Ru Ru Ru	H Me Et	6, 11 7, 12	0s 0s	H Me

Die NMR-Daten der Verbindungen 8-12 sind in Tab. 1 zusammengestellt. Durch die Koordination des Propens und Butens am Ruthenium bzw. Osmium wird in den Kationen von 9, 10 und 12 ein Chiralitätszentrum am olefinischen =CHR-Kohlenstoffatom erzeugt. Da außerdem das Metallatom prochiral ist, bedingt dies eine Nicht-Äquivalenz der Trimethylphosphan-Liganden und führt damit zum Auftreten von jeweils zwei getrennten Dubletts für die PMe₃-Protonen und -Phosphorkerne in den ¹H- und ³¹P-NMR-Spektren. Folgerichtig werden auch im ¹³C-NMR-Spektrum von 9 (das stellvertretend für die PCH₃-Atome beobachtet (Angaben im Exp. Teil). Die C₂H₄-Protonen von 8 und 11 ergeben im ¹H-NMR-Spektrum jeweils ein Triplett, was auf eine rasche Rotation des Olefins um die $M - C_2H_4$ -Bindungsachse hinweist. Das Signal von 8 verbreitert sich bei Tempe-

	C_6H_6		PMe ₃		C_2H_3R	PMe ₃		
	δ (t)	$J_{ m PH}$	δ	$J_{\rm PH}/N$	δ	$J_{ m PH}$	δ	J _{PP}
2 ^{a)}	6.30	1.0	1.80 (vt)	10.8				
8	6.88	0.6	1.89 (vt)	10.4	3.49 (t)	3.0	9.71 (s)	
9	6.84	0.6	2.02 (d) 1.87 (d)	10.2 10.2	b)		10.23 (d) 5.88 (d)	49.1
10	6.82	0.6	1.97 (d) 1.85 (d)	10.2 10.2	b)		10.56 (d) 5.90 (d)	49.1
11	6.90	0.6	1.97 (vt)	10.4	3.42 (t)	3.4		
12	6.87	0.6	2.05 (d) 1.89 (d)	10.0 10.0	3.17 (m) [2H] ^{c)} 2.57 (m) [1H]		-42.10 (d) -46.41 (d)	37.3

Tab. 1. ¹H- und ³¹P-NMR-Daten der Komplexe **2**, **8**–12 in CD₃NO₂ (¹H: δ in ppm, int. TMS; ³¹P: δ in ppm, 85proz. H₃PO₄ ext.; J und N in Hz)

^{a)} $\delta(OCMe_2) = 2.55$ (s). τ^{-b} Signale der C₃H₆- bzw. C₄H₈-Protonen werden u. a. von PMe₃-Signalen verdeckt und sind nicht genau lokalisierbar. $-^{c}$ Signal der CCH₃-Protonen von PMe₃-Signalen verdeckt.

raturerniedrigung, ohne daß ein vollständiges Einfrieren der Rotation (bei -80° C) zu erreichen ist.

2. Nucleophile Additionsreaktionen mit weichen und harten Lewis-Basen

Das elektrophile Verhalten der durch Hydridabspaltung hergestellten Aromaten(olefin)-Komplexe wurde beispielhaft mit **8** als Ausgangsverbindung untersucht. Aufgrund der höheren Ladung des Dikations $[C_6H_6Ru(PMe_3)_2C_2H_4]^{2+}$ im Vergleich zum Monokation $[C_6H_6RuCH_3(PMe_3)C_2H_4]^+$ war eine gesteigerte Reaktivität gegenüber Nucleophilen zu erwarten, was sich im Experiment auch bestätigte.

Die Ergebnisse der durchgeführten Reaktionen sind in Schema 1 zusammengefaßt. Im Gegensatz zu $[C_6H_6RuCH_3(PMe_3)C_2H_4]^+$, das zwar mit PMe₃, nicht jedoch mit PPh₃ und P(OMe)₃ unter nucleophiler Addition am Ethylen reagiert⁴), setzt sich **8** rasch und quantitativ mit PMe₃, PiPr₃, PPh₃ und P(OMe)₃ um und ergibt die farblosen, luftstabilen (2-Phosphonioethyl)ruthenium-Komplexe **13** – **16**. Mit dem schwächer nucleophilen Triphenylphosphit stellt sich ein Gleichgewicht ein, das bei 0°C in Nitromethan stärker auf der Seite des Addukts **17**, bei höherer Temperatur dagegen stärker auf der Seite der Ausgangssubstanzen **8** und P(OPh)₃ liegt. Eine Reindarstellung von **17** war nicht möglich; das Dikation wurde ¹Hund ³¹P-NMR-spektroskopisch charakterisiert (Tab. 2).

Die Umsetzung von 15 mit PMe₃ zu 13 zeigt, daß das stärkere Nucleophil das schwächere aus der $C_2H_4PR_3$ -Gruppierung verdrängt. Dabei ist eine primäre Dissoziation der C-PR₃-Bindung anzunehmen. Bei der Reaktion des (Hexamethylbenzol)ruthenium-Komplexes 21³⁾ mit PMe₃ erfolgt ebenfalls eine Addition des Phosphans am Olefin unter Bildung von 22; eine Substitution des Ethylens läßt sich auch hierbei nicht nachweisen.

Tab. 2. ¹H- und ³¹P-NMR-Daten der Komplexe 13-17 und 22 in CD_3NO_2 (¹H: δ in ppm, int. TMS; ³¹P: δ in ppm, 85proz. H₃PO₄ ext.; J und N in Hz)

	$\begin{array}{c} C_6 R_6 \\ \delta \left(t \right) & J_{PH} & \delta \end{array}$		PM δ (vt)	$1e_3$ N	$C_2H_4PR_3$ δ J_{PH}		$\frac{RuPMe_3}{\delta (d) J_{PP}}$		$\begin{array}{c} CH_2 PR_3\\ \delta (t) & J_{PP} \end{array}$	
13	6.01	0.9	1.59	9.8	2.7 (m) $[C_2H_4]^{a}$ 1.88 (d) $[PMe_3]$	13.8	4.83	3.3	23.45	3.3
14	6.09	1.0	1.66	9.6	2.65 (m) [PCH] ^{b)} 1.50 (dd) [CH ₃] ^{c)}	14.6	4.20	3.0	38.34	3.0
15	6.09	0.9	1.39	9.6	3.45 (m) $[C_2H_4]^{a}$ 7.92 (m) $[C_6H_5]$		3.94	3.3	18.46	3.3
16	6.01	0.9	1.59	9.8	2.8 (m) $[C_2H_4]^{a}$ 4.21 (d) $[OCH_3]$	10.8	4.21	3.0	43.52	3.0
17	5.88	0.9	1.44	9.8	3.2 (m) $[C_2H_4]^{a}$ 7.52 (m) $[C_6H_5]$		3.76	4.5	28.77	4.5
22	2.30	0.5	1.53	9.0	2.00 (d) $[PMe_3]^{d}$	14.0	6.33	3.0	23.59	3.0

^{a)} Zweites Signal der C₂H₄-Protonen von Signal der RuPMe₃-Protonen verdeckt. – ^{b)} Signale der C₂H₄-Protonen nicht genau lokalisierbar wegen Überlappung mit Signalen der RuPMe₃- und PCHCH₃-Protonen. – ^{c)} J_{HH} = 7.2 Hz. – ^{d)} Signale der C₂H₄-Protonen nicht genau lokalisierbar wegen Überlappung mit Signalen der C₆Me₆-, RuPMe₃- und CPMe₃-Protonen.

Harte Basen wie z. B. NEt₃, NaOMe und LiMe reagieren mit 8 in eindeutiger Weise unter Angriff am Aromaten und *nicht* am Ethylen. Es entstehen die η^5 -Cyclohexadienyl-Verbindungen 18–20, die den aus $[C_6H_6Ru(PMe_3)_3](PF_6)_2$ (23)⁵⁾ darstellbaren Komplexen 24 und 25 an die Seite zu stellen sind. Die Addition von Triethylamin und Methanolat ist reversibel; bei Einwirkung von CF₃CO₂H auf 18, 19 und 24 erhält man die Benzol-Verbindungen 8 bzw. 23 zurück.

 $[C_{6}H_{6}Ru(PMe_{3})_{3}](PF_{6})_{2}$ 23
23
23
23
23
24
23
11Me
11Me
11Me
11Me
11(\eta^{5}-C_{6}H_{6}NEt_{3})Ru(PMe_{3})_{3}](PF_{6})_{2} [(\eta^{5}-C_{6}H_{6}Me)Ru(PMe_{3})_{3}]PF_{6}
24
25

Die Bildung der Komplexe 18–20 und 24, 25 (mit einer Ausbeute von ca. 70–75%) ist in zweifacher Hinsicht bemerkenswert. Zum einen besteht eine Beziehung in der Reaktivität von 8 und der Neutralverbindung [Ru(C₂H₄)(CO)-(PMe₂Ph)₂Cl₂], die mit PMe₂Ph, nicht jedoch mit Benzylamin oder 4-Methylpyridin reagiert¹⁰. Ein Olefinligand am Ruthenium(II) besitzt also offensichtlich allgemein eine Präferenz für *weiche* und nicht für harte Basen. Zum anderen fällt ein Unterschied im Verhalten von 8 und dem strukturanalogen Komplex [C₅H₅Rh(PMe₃)₂C₂H₄](PF₆)₂^{9,11} auf. Letzterer reagiert mit NEt₃ ausschließlich, mit NaOMe und NaBr bevorzugt unter nucleophiler Addition am Ethylen, während ein Angriff am Ring in keinem Fall nachzuweisen ist. Die einleitend erwähnte empirische Regel⁷ wird also auch hier befolgt.

	6-X-n ⁵ -C-H _c a)						PMe ₂		C _a H _a		PMe,
	¢(H€)	δ(H ^{1,5})	δ(H ² ,')	δ(H³)	δ (X)	JHH	3	<u>N</u>	δ (t)	∃₽н	- 3 6
18	3.52	3.52	4.80	6.30	3.35(q) 1.38(t)	7.5	1.63(vt)	8.5	2.45	3.0	2.94(s)
19	3,90	3.90	4.18	5.87	3.00(s)		1.57(vt)	8.8	2.43	2.8	
20	2.68	3.50	4.50	6,13	0.40(d)	6,2	1.50(vt)	8.6	2,23	2.9	2.48(br)
24	3.45	b)	4,98	5.66	3.07(q) 1.25(t)	7.3	1.55 ^{c)}				-2.38 ^{d)}
25	2.62	3.11	4.75	5.50	0.54(d)	6.2	1.48 ^{e)}				-2.17 ^{f)}

Tab. 3. ¹H- und ³¹P-NMR-Daten der Komplexe **18–20**, **24** und **25** in CD₃NO₂ (¹H: δ in ppm, int. TMS; ³¹P: δ in ppm, 85proz. H₃PO₄ ext.; J und N in Hz)

^{a)} Alle Signale der Protonen H¹⁻⁶ sind relativ breit; für die Signale von H⁴, H^{3.5} (Ausnahme **18**, **19**), H^{2.6} (nur bei **20**, **25**) und H⁶ (nur bei **24**) ist eine Triplettaufspaltung zu erkennen; für Zuordnung siehe Lit.⁵⁾. – ^{b)} Signal liegt unter Signalgruppe der NEt₃-Protonen. – ^{c)} Bei Raumtemp. virtuell koppelndes Signal; bei – 30°C $\delta = 1.83$ (d), $J_{PH} = 8.4$ Hz (1 PMe₃) und 1.37 (vt), N = 8.7 Hz (2 PMe₃). – ^{d)} Bei Raumtemp. breites Signal; bei – 30°C AB₂-Spektrum mit Zentren bei $\delta = -6.67$ und -0.38. – ^{e)} Bei Raumtemp. virtuell koppelndes Signal; bei – 30°C $\delta = 1.76$ (d), $J_{PH} = 8.4$ Hz (1 PMe₃) und 1.31 (vt), N = 8.0 Hz (2 PMe₃). – ^{f)} Bei Raumtemp. breites Signal; bei – 30°C AB₂-Spektrum mit Zentren bei $\delta = -6.44$ und –0.11.

Tab. 3 gibt die ¹H- und ³¹P-NMR-Daten von **18–20**, **24** und **25** wieder. Der Vergleich der chemischen Verschiebung und der Kopplungskonstanten der Cyclohexadienylprotonen mit denen der Verbindungen $[(\eta^5-C_6H_6PR_3)-Ru(PMe_3)_2PR'_3](PF_6)_2^{5)}$ und $[(\eta^5-C_6H_6R)Ru(PMe_3)_2X]^{6)}$ läßt keinen Zweifel daran, daß das addierte Nucleophil Nu (NEt₃, OMe⁻ oder Me⁻) in *exo*-Stellung am sp³hybridisierten C-Atom des Sechsrings gebunden ist. Die ¹H- und ³¹P-NMR-Spektren von **24** und **25** bei – 30°C zeigen darüber hinaus, daß bei tiefen Temperaturen eine eingeschränkte Drehbarkeit um die Ru-C₆H₆Nu-Bindungsachse vorliegt.

Schema 2 gibt ein zusammenfassendes Bild über die Reaktivität von Ruthenium- und Osmium-Halbsandwichkomplexen der allgemeinen Zusammensetzung $[C_6H_6M(X)(Y)(Z)]^{n+}$ (n = 1 oder 2) gegenüber Nucleophilen. Es macht noch einmal das Wechselspiel von gebundenem Ligand und angreifendem Substrat deutlich, das im Ergebnis die Bildung sehr unterschiedlicher Produkte bewirkt.

Schema 2

1) $X = PMe_3$, $Y = C_2H_3R$, Z = H, $Nu = H^-$ [Lit.⁴]; 2) $X = PMe_3$, $Y = CH_3$, $Z = C_2H_3R$, $Nu = I^-$ [Lit.⁴]; 3) $X = Y = P(OMe)_3$, Z = I, $X' = P(O)(OMe)_2$, $Nu = I^-$ [Lit.¹²]; 4) $X = PMe_3$, $Y = C_2H_3R$, Z = H, $Nu = PMe_3$ (n = m), I^- (m = 0) [Lit.⁴]; 5) $X = PMe_3$, $Y = CH_3$, PMe_3 , $Z = C_2H_4$, $Nu = PR_3$ [Lit.⁴ und diese Arbeit]; 6) $X = CH_3CN$, $Y = Z = Nu = PMe_3$; $X = Y = PMe_3$, Z = I, $Nu = R^-$; $X = Y = PMe_3$, $Z = C_2H_4$, $Nu = NEt_3$, OMe^- , Me^- [Lit.^{5.6}] und diese Arbeit]; 7) X = H, CH_3 , I, Y = CNR, $Z = Nu = PMe_3$ [Lit.¹³]

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung mit Sachmitteln, dem Fonds der Chemischen Industrie zusätzlich für ein Doktorandenstipendium (für R. W.). Frau G. Liebler sind wir für geschickte experimentelle Mitarbeit, Frau M. Rothenburger und Fräulein R. Schedl für Elementaranalysen, Herrn Dr. W. Buchner und Herrn C. P. Kneis für ¹³C- und ³¹P-NMR-Messungen und vor allem der DEGUSSA für wertvolle Chemikalienspenden zu aufrichtigem Dank verbunden.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Synthese der Ausgangskomplexe 1, 3–7, 21 und 23 crfolgte nach Literaturangaben^{3-5,14)}. 4 und 5 wurden aus $C_6H_6Ru(PMe_3)_2$ und $n-C_3H_7Br$ bzw. $n-C_4H_9Br$ hergestellt, konnten jcdoch nicht analysenrein, sondern nur im Gemisch mit [$C_6H_6RuBr(PMe_3)_2$]PF₆ isoliert werden¹⁴⁾. Für die Synthese von 9 und 10 wurde das Gemisch verwendet. – NMR: Varian T 60, XL 100 und Bruker FT-WH 90. – Äquivalentleitfähigkeit Λ in Nitromethan.

 $Aceton(\eta^6-benzol)bis(trimethylphosphan)ruthenium(II)-bis(tetrafluoroborat)$ (2): Eine Lösung von 100 mg (0.21 mmol) 1 in 3 ml Aceton wird mit 150 mg (0.79 mmol) [OEt₃]BF₄ versetzt. Es bildet sich ein farbloser Niederschlag, der sich beim Erwärmen auf 50°C wieder löst. Aus der Lösung fallen nach kurzer Zeit gelbe Kristalle aus. Die Fällung wird durch Zugabe von 3 ml Ether vervollständigt, der Niederschlag zweimal mit Aceton/Ether (50: 50) und dreimal mit Ether gewaschen und aus Aceton/Ether umkristallisiert. Gelber, luftstabiler

Feststoff, Ausb. 85 mg (71%). – IR (Nujol): $v(CO) = 1650 \text{ cm}^{-1}$. – $\Lambda = 185 \text{ cm}^2$. $\Omega^{-1} \cdot \text{mol}^{-1}$. $C_{15}H_{30}B_2F_8OP_2Ru$ (563.1) Ber. C 31.99 H 5.38 Ru 17.95 Gef. C 31.56 H 5.55 Ru 18.11

 $(\eta^{6}\text{-}Benzol)(ethylen)bis(trimethylphosphan)ruthenium(II)-bis(hexafluorophosphat)$ (8): Eine Lösung von 111 mg (0.20 mmol) 3 in 2 ml Aceton wird unter Rühren mit 116 mg (0.30 mmol) [CPh₃]PF₆ versetzt. Die Lösung färbt sich tieforange, und nach einigen min fällt ein farbloser Niederschlag aus. Durch Zugabe von 50 µl Methanol wird das überschüssige [CPh₃]PF₆ zerstört. Zur Vervollständigung der Kristallisation des Produkts werden 5 ml Ether zugesetzt. Nach 10 min Rühren wird die überstehende Lösung dekantiert, der verbleibende Feststoff 4mal mit je 5 ml Ether gewaschen und aus Nitromethan/Ether umkristallisiert: Farblose, luftstabile Kristalle, Ausb. 97 mg (71%). – ¹³C-NMR (CD₃NO₂): $\delta = 104.54$ (t, $J_{PC} = 1.5$ Hz, C₆H₆); 50.06 (s, C₂H₄); 21.15 [vt, N = 39.8 Hz, P(CH₃)₃]. – $\Lambda = 187$ cm² · Ω^{-1} · mol⁻¹.

 $\begin{array}{rrrr} C_{14}H_{28}F_{12}P_4Ru & (649.4) & \text{Ber. C } 25.89 & \text{H } 4.36 & \text{Ru } 15.56 \\ & & \text{Gef. C } 26.44 & \text{H } 4.56 & \text{Ru } 15.53 \end{array}$

 $(\eta^{6}$ -Benzol) (propen) bis(trimethylphosphan)ruthenium(II)-bis(hexafluorophosphat) (9) und $(\eta^{6}$ -Benzol) (1-buten) bis(trimethylphosphan)ruthenium(II)-bis(hexafluorophosphat) (10): Eine Lösung von 200 mg eines Gemisches von 4 bzw. 5 und $[C_{6}H_{6}RuBr(PMe_{3})_{2}]PF_{6}$ in 3 ml Nitromethan wird unter Rühren mit 193 mg (0.50 mmol) $[CPh_{3}]PF_{6}$ versetzt. Im Fall von 5 muß die Lösung ca. 5 min auf 80°C erwärmt werden. Die weitere Aufarbeitung erfolgt analog zu 8. Ausb. 60-70% (bez. auf 4 bzw. 5).

9: ¹³C-NMR (CD₃NO₂): $\delta = 104.54$ (t, $J_{PC} = 1.8$ Hz, C_6H_6); 77.71 (s) und 53.51 (s), (C_2H_3) ; 25.18 (s, =CHCH₃); 21.41 (dd) und 21.00 (dd) [$J_{PC} = 36.8$ und 2.2 Hz, P(CH₃);].

9: $C_{15}H_{30}F_{12}P_4Ru$ (663.4) Ber. C 27.16 H 4.57 Ru 15.24 Gef. C 26.89 H 4.85 Ru 15.04 10: $C_{16}H_{32}F_{12}P_4Ru$ (667.4) Ber. C 28.37 H 4.77 Ru 14.92 Gef. C 28.58 H 4.88 Ru 15.27

 $(\eta^{\circ}$ -Benzol)(ethylen)bis(trimethylphosphan)osmium(II)-bis(hexafluorophosphat) (11) und $(\eta^{\circ}$ -Benzol)(propen)bis(trimethylphosphan)osmium(II)-bis(hexafluorophosphat) (12): Darstellung analog 8, ausgehend von 6 bzw. 7. Im Fall von 12 wird erst nach 2 h Rühren Methanol und Ether zugesetzt. Ausb. 92% 11 bzw. 74% 12.

11:	$C_{14}H_{28}F_{12}OsP_4$ (738.5)	Ber.	C 22.77	H 3.83	Os 25.75
		Gef.	C 22.36	H 3.61	Os 26.15
12:	$C_{15}H_{30}F_{12}OsP_4$ (752.5)	Ber.	C 24.00	H 4.03	Os 25.24
		Gef.	C 23.95	H 4.09	Os 25.05

Komplexe $[C_6H_6Ru(C_2H_4PR_3)(PMe_3)_2](PF_6)_2$ (13–16): Eine Lösung von 80 mg (0.12 mmol) 8 in 1 ml Nitromethan wird mit 0.20 mmol PR₃ (R = Me, *i*Pr, Ph, OMe) versetzt und 20 min bei Raumtemp. gerührt. Nach Zugabe von Ether bildet sich ein farbloser Niederschlag, der mehrmals mit Ether gewaschen und i. Vak. getrocknet wird. Ausb. 90–95%.

 $(\eta^{6}$ -Benzol)bis(trimethylphosphan)[2-(trimethylphosphonio)ethyl]ruthenium(II)-bis(hexa-fluorophosphat) (13): $\Lambda = 171 \text{ cm}^{2} \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{c} C_{17}H_{37}F_{12}P_5Ru \ (725.5) & \mbox{Ber.} \ C \ 28.14 \ H \ 5.15 \ Ru \ 13.93 \\ & \mbox{Gef.} \ C \ 28.30 \ H \ 5.00 \ Ru \ 13.13 \end{array}$

 $(\eta^{6}\text{-}Benzol)[2-(triisopropylphosphonio)ethyl]bis(trimethylphosphan)ruthenium(II)-bis-(hexafluorophosphat)$ (14): $\Lambda = 164 \text{ cm}^{2} \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $(\eta^{6}\text{-}Benzol)bis(trimethylphosphan)[2-(triphenylphosphonio)ethyl]ruthenium(II)-bis(hexa-fluorophosphat)$ (15): $\Lambda = 175 \text{ cm}^{2} \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

$$\begin{array}{rl} C_{32}H_{43}F_{12}P_{5}Ru\ (911.7) & \mbox{Ber.} C\ 42.16\ H\ 4.76\ Ru\ 11.09\\ & \mbox{Gef.} C\ 42.06\ H\ 4.71\ Ru\ 11.32 \end{array}$$

 $(\eta^{6}-Benzol)[2-(trimethoxyphosphonio)ethyl]bis(trimethylphosphan)ruthenium(II)-bis-(hexafluorophosphat)$ (16): $\Lambda = 170 \text{ cm}^{2} \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

Die Reaktion von 8 mit P(OPh)₃ wurde analog durchgeführt. Nach Zugabe von Ether isolierte man einen farblosen Feststoff, der neben (η^6 -Benzol)bis(trimethylphosphan)[2-(triphenoxyphosphonio)ethyl]ruthenium(II)-bis(hexafluorophosphat) (17) noch 8 enthielt. Eine vollständige Trennung gelang nicht; 17 wurde daher ¹H- und ³¹P-NMR-spektroskopisch charakterisiert (Tab. 2).

(*Ethylen*) [exo-6-(triethylammonio)- η^{5} -cyclohexadienyl]bis(trimethylphosphan)ruthenium-(II)-bis(hexafluorophosphat) (**18**): Eine Lösung von 65 mg (0.10 mmol) **8** in 1 ml Nitromethan wird mit 25 µl (0.30 mmol) NEt₃ 10 min bei Raumtemp. gerührt. Nach Zugabe einer Lösung von 100 µl NEt₃ in 4 ml Ether bildet sich ein farbloser Niederschlag, der abfiltriert, dreimal mit je 4 ml Ether gewaschen und i. Vak. getrocknet wird. Ausb. 52 mg (70%). – $\Lambda = 167 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$. – ¹³C-NMR (CD₃NO₂): $\delta = 101.20$ (s, C²⁴ von C₆H₆); 94.67 (t, J_{PC} = 2.2 Hz, C³ von C₆H₆); 83.62 (t, J_{PC} = 2.2 Hz, C^{1,5} von C₆H₆); 48.18 (s, NCH₂); 45.35 (s, C₂H₄); 36.90 (s, C⁶ von C₆H₆); 19.54 (virtuell koppelndes Signal, PMe₃); 9.97 (s, CH₂CH₃).

 $\begin{array}{c} C_{20}H_{43}F_{12}NP_4Ru~(750.6) & \text{Ber. C}~32.00~H~5.79~N~1.87~Ru~13.47\\ & \text{Gef. C}~31.73~H~5.74~N~2.40~Ru~14.20 \end{array}$

 $(Ethylen)(exo-6-methoxy-\eta^3-cyclohexadienyl)bis(trimethylphosphan)ruthenium(II)-hexa$ fluorophosphat (19): Eine Suspension von 65 mg (0.10 mmol) 8 in 2 ml Methanol wirdmit einer Lösung von NaOMe (hergestellt aus 3.0 mg (0.13 mmol) Na und 1 ml Methanol)versetzt. Nach etwa 1 min Rühren entsteht eine klare Lösung, aus der danach ein farbloserNiederschlag ausfällt. Die Fällung wird nach weiteren 20 min Rühren durch Zugabe von3 ml Ether vervollständigt, die überstehende Lösung vom Niederschlag dekantiert und dieserdreimal mit je 2 ml Ether gewaschen. Trocknen i. Vak. ergibt ein farbloses Pulver, Ausb. $41 mg (73%). – <math>\Lambda = 83 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $(Ethylen)(exo-6-methyl-\eta^5-cyclohexadienyl)bis(trimethylphosphan)ruthenium(II)-hexa$ fluorophosphat (20): Eine Suspension von 65 mg (0.10 mmol) 8 in 1 ml Ether wird mit 0.5 mleiner 1.5 M Lösung von Methyllithium in Ether versetzt und 2 h bei Raumtemp. gerührt.Nach Zugabe von 5 ml Ether läßt man den farblosen Niederschlag absitzen und dekantiertdie überstehende Lösung. Der Niederschlag wird dreimal mit je 4 ml Ether gewaschen,getrocknet und aus 0.5 ml Nitromethan/5 ml Ether umkristallisiert. In Nitromethan unlös-

liche Anteile werden vor der Zugabe des Ethers durch Zentrifugieren entfernt. Ausb. 40 mg (77%). – $\Lambda = 93 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{rrrr} C_{15}H_{31}F_6P_3Ru~(519.4) & \mbox{Ber.} C~34.68~H~6.03~Ru~19.46\\ & \mbox{Gef.} C~34.21~H~5.69~Ru~20.30 \end{array}$

 $(\eta^{\delta}$ -Hexamethylbenzol)bis(trimethylphosphan)[2-(trimethylphosphonio)ethyl]ruthenium-(II)-bis(hexafluorophosphat) (22): Analog 13, ausgehend von 30 mg (0.050 mmol) 21 und 10 µl (0.10 mmol) PMe₃. Farbloses Pulver, Ausb. 28 mg (79%).

 $\begin{array}{rrrr} C_{23}H_{49}F_{12}P_5Ru \ (809.6) & \mbox{Ber.} \ C \ 34.12 \ H \ 6.11 \ Ru \ 12.48 \\ & \mbox{Gef.} \ C \ 34.03 \ H \ 6.09 \ Ru \ 12.53 \end{array}$

[exo-6-(Triethylammonio)- η^5 -cyclohexadienyl]tris(trimethylphosphan)ruthenium(II)-bis-(hexafluorophosphat) (24): Analog 18, ausgehend von 70 mg (0.10 mmol) 23. Farbloses, mikrokristallines Pulver, Ausb. 58 mg (70%). $-\Lambda = 188 \text{ cm}^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{cccc} C_{21}H_{48}F_{12}NP_5Ru \ (798.6) & Ber. \ C \ 31.58 & H \ 6.06 & N \ 1.76 & Ru \ 12.66 \\ & Gef. \ C \ 31.30 & H \ 6.19 & N \ 1.98 & Ru \ 12.47 \end{array}$

(exo-6-Methyl- η^{5} -cyclohexadienyl) tris (trimethylphosphan) ruthenium (II)-hexafluorophosphat (25): Analog 20, ausgehend von 70 mg (0.10 mmol) 23. Farblose Kristalle, Ausb. 43 mg (75%). – $\Lambda = 97 \text{ cm}^{2} \cdot \Omega^{-1} \cdot \text{mol}^{-1}$.

 $\begin{array}{rrrr} C_{16}H_{36}F_6P_4Ru~(567.4) & \mbox{Ber.} C~33.87 & \mbox{H}~6.41 & \mbox{Ru}~17.80 \\ & \mbox{Gef.} C~33.37 & \mbox{H}~6.14 & \mbox{Ru}~18.80 \end{array}$

Reaktion von 18, 19, 24 mit Trifluoressigsäure: Eine Lösung von 0.10 mmol 18, 19 oder 24 in 1 ml Methanol wird mit 23 μ l (0.20 mmol) CF₃CO₂H versetzt und 20 min bei Raumtemp. gerührt. Nach Zugabe von 2 ml Ether fällt ein farbloser Niederschlag aus, der aus Nitromethan/Ether umkristallisiert und ¹H-NMR-spektroskopisch als 8 bzw. 23 identifiziert wird. Ausbeute praktisch quantitativ.

- ²⁾ H. Werner, Angew. Chem. **95**, 932 (1983); Angew. Chem., Int. Ed. Engl. **22**, 927 (1983).
- ³⁾ R. Werner und H. Werner, Chem. Ber. 115, 3781 (1982).
- ⁴⁾ R. Werner und H. Werner, Chem. Ber. 116, 2074 (1983).
- ⁵⁾ H. Werner und R. Werner, Chem. Ber. 117, 142 (1984).
- ⁶⁾ H. Werner, R. Werner und C. Burschka, Chem. Ber. 117, 152 (1984).
- ⁷⁾ S. G. Davies, M. L. H. Green und D. M. P. Mingos, Tetrahedron 34, 3047 (1978).
- ⁸⁾ H. Werner und R. Werner, Chem. Ber. 115, 3766 (1982).
- ⁹⁾ H. Werner, R. Feser und L. Hofmann, J. Organomet. Chem., im Druck.
- ¹⁰⁾ M. Stephenson und R. J. Mawby, J. Chem. Soc., Dalton Trans. 1981, 2112.
- ¹¹ H. Werner, R. Feser und R. Werner, J. Organomet. Chem. 181, C7 (1979).
- ¹²⁾ U. Schubert, R. Werner, L. Zinner und H. Werner, J. Organomet. Chem. 253, 363 (1983).
- ¹³⁾ H. Werner und R. Weinand, Z. Naturforsch., Teil B 38, 1518 (1983).
- ¹⁴⁾ R. Werner, Dissertation, Univ. Würzburg 1981.

[31/85]

¹⁾ VIII. Mitteil.: *H. Werner, H. Kletzin* und *C. Burschka*, J. Organomet. Chem. **276**, 231 (1984).